Abstract

AbstractTo counter the threat of drought, which is expected to increase in the future, we analyzed the combined effects of elevated carbon dioxide (CO2) concentration and drought on the photosynthetic apparatus and morphological traits in seedlings of yellow poplar (Liriodendron tulipifera). The plants were grown for four months in a phytotron under different CO2 concentrations [ambient CO2, 430 ppm, AC) and elevated CO2, 640 ppm, EC] and water treatment [field capacity, FC and 50% of field capacity, FC50]. FC50 was sufficient for inducing a reduction in the photosynthetic rate of L. tulipifera. However, under FC50 combined with EC, we observed an increase in photosynthetic rate with increased photopigment content, photochemistry efficiency, and light harvesting ability. Further, decreased specific leaf area and increased wax coverage in EC suggested that EC contributed to protect chloroplasts and reduce water loss. In conclusion, functional improvements of the photosynthetic apparatus with changes in morphological traits were observed under FC50 combined with EC and EC ameliorated the adverse effect of FC50 on the seedlings of L. tulipifera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.