Abstract

Heat stress amplified by climate change causes excessive reductions in labor capacity, work injuries, and socio-economic losses. Yet studies of corresponding impact assessments and adaptation developments are insufficient and incapable of effectively dealing with uncertain information. This gap is caused by the inability to resolve complex channels involving climate change, labor relations, and labor productivity. In this paper, an optimization-based productivity restoration modeling framework is developed to bridge the gap and support decision-makers in making informed adaptation plans. The framework integrates a multiple-climate-model ensemble, an empirical relationship between heat stress and labor capacity, and an inexact system costs model to investigate underlying uncertainties associated with climate and management systems. Optimal and reliable decision alternatives can be obtained by communicating uncertain information into the optimization processes and resolving multiple channels. Results show that the increased heat stress will lead to a potential reduction in labor productivity in China. By solving the objective function of the framework, total system costs to restore the reduction are estimated to be up to 248,700 million dollars under a Representative Concentration Pathway of 2.6 (RCP2.6) and 697,073 million dollars under RCP8.5 for standard employment, while less costs found for non-standard employment. However, non-standard employment tends to restore productivity reduction with the minimum system cost by implementing active measures rather than passive measures due to the low labor costs resulting from ambiguities among employment statuses. The situation could result in more heat-related work injuries because employers in non-standard employment can avoid the obligation of providing a safe working environment. Urgent actions are needed to uphold labor productivity with climate change, especially to ensure that employers from non-standard employment fulfill their statutory obligations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.