Abstract
A new approach for the elaboration of low molecular weight pressure-sensitive adhesives based on supramolecular chemistry is explored. The synthesis of model systems coupled with probe-tack tests and rheological experiments highlights the influence of the transient network formed by supramolecular bonds on the adhesion energy. The first step of our approach consists of synthesizing poly(butyl acrylate-co-glycidyl methacrylate) copolymers from a difunctional initiator able to self-associate by four hydrogen bonds between urea groups. Linear copolymers with a low dispersity (Mn = 10 kg/mol, Ip < 1.4) have been synthesized via atom transfer radical polymerization. Films of the copolymers were then partially cross-linked through reaction of the epoxy functions with a diamine. The systematic variation of the average ratio of glycidyl methacrylate and diamine per copolymer shed light on the respective role played by the supramolecular interactions (between bis-urea groups and with the side chains) and by the chain extension and branching induced by the diamine/epoxy reaction. In this strategy, the adhesive performance can be optimized by modifying the strength of "stickers" (via the structure of the supramolecular initiator, for instance) and the polymer network (e.g., via the length and level of branching of the copolymer chains) in order to approach commercial PSA-like properties (high debonding energy and clean removal).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.