Abstract

Amplified spontaneous emission (ASE) and double Rayleigh backscattering (DRBS) degrade the effective noise figure (ENF) and ultimately limit the performance of fiber Raman amplifiers (FRAs). This limitation is especially severe when a time-division-multiplexed (TDM) pumping scheme is employed. In this paper, we theoretically study the joint impact of ASE and DRBS on ENF in pulse-pumped FRAs. We demonstrate that the ASE is the major source of noise for small pump duty cycles, whereas DRBS dominates when a typical FRA operates in the continuous-wave regime. If the pump power is gradually increased, ENF improves until the gain reaches an optimal value. We show the increase of the optimal gain with pump duty cycle and with decreasing fiber scattering efficiency. Our study reveals the importance of taking into account the effects of both ASE and DRBS for an accurate estimation of ENF penalty in pulse-pumped FRAs, especially operating at high gains when pump duty cycle is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.