Abstract

Oxidative stress is a key step in the pathogenesis of ethanol associated liver injury. Ethanol administration induces an increase in lipid peroxidation either by enhancing the production of oxygen reactive species or by decreasing the level of endogenous antioxidants. In this present study, four groups of male guinea pigs ( Cavia porcellus) were maintained for 45 days as follows: Control group (1 mg ascorbic acid (AA)/100 g body wt./day); Ethanol group (1 mg AA/100 g body wt./day+900 mg ethanol/100 g body wt./day); Selenium+AA group (25 mg AA+0.05 mg sodium selenite/100 g body wt./day); Ethanol+Se+AA group (25 mg AA+0.05 mg sodium selenite/100 g body wt.+900 mg ethanol/100 g body wt./day). Malondialehyde (MDA), hydroperoxides (HP) and conjugated dienes (CD) were significantly increased, while the activities of scavenging enzymes superoxide dismutase (SOD) and catalase were reduced in the alcohol administered groups. Co-administration of Se+AA along with alcohol increased the activities of scavenging enzymes and reduced the lipid peroxidation products level in hepatic tissues of guinea pigs. Activities of glutathione peroxidase (GPX) and glutathione reductase (GR) were enhanced in co-administered group. γ-Glutamyl transpeptidase (GGT), a marker enzyme of alcohol induced toxicity, was also reduced, as was the glutathione content. This study suggests that the combined effect of Se+AA, provides protection against alcohol-induced oxidative stress as evidenced from the decreased levels of lipid peroxidation products and enhanced activities of scavenging enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.