Abstract

This study investigated the combined effect of air flow and use of granular support medium in suspension in a submerged membrane reactor to reduce membrane fouling. Lower membrane fouling and a slower rise in transmembrane pressure (TMP) were noticed when a higher air flow rate was used for membrane scouring. Further fouling reduction was achieved by adding a granular medium in the reactor. The results showed that in the absence of the granular medium, when air flow was tripled (from 600 to 1800L/h/m2), the TMP development was decreased by 60%. TMP further dropped to 85% with the addition of granular medium (for the same air flow rate). The doubling of the air flow rate (from 600 to 1200L/h/m2), without granular medium, led to a 32% reduction in TMP development at 10L/m2.h. The same result was obtained at a lower air flow rate of 600L/h/m2 with the granular medium. This result shows that the same reduction of TMP can be obtained by adding granular medium instead of doubling air flow rate. Therefore adding granular medium in the suspension (mechanical scouring) with air flow (air scouring) could be a sustainable alternative to applying high air flow in submerged membrane systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.