Abstract

A fundamental limitation of T cell therapies in solid tumors is loss of inflammatory effector functions, such as cytokine production and proliferation. Here, we target a regulatory axis of T cell inflammatory responses, Regnase-1 and Roquin-1, to enhance antitumor responses in human T cells engineered with two clinical-stage immune receptors. Building on previous observations of Regnase-1 or Roquin-1 knockout in murine T cells or in human T cells for hematological malignancy models, we found that knockout of either Regnase-1 or Roquin-1 alone enhances antitumor function in solid tumor models, but that knockout of both Regnase-1 and Roquin-1 increases function further than knockout of either regulator alone. Double knockout of Regnase-1 and Roquin-1 increased resting T cell inflammatory activity and led to at least an order of magnitude greater T cell expansion and accumulation in xenograft mouse models, increased cytokine activity, and persistence. However double knockout of Regnase-1 and Roguin-1 also led to a lymphoproliferative syndrome and toxicity in some mice. These results suggest that regulators of immune inflammatory functions may be interesting targets to modulate to improve antitumor responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call