Abstract
The possible reaction product distribution and mechanism of carbon monophosphide CP with unsaturated hydrocarbons allene CH(2)CCH(2) and methylacetylene CH(3)CCH are investigated at the B3LYP/6-311+G(d,p), QCISD(T)/6-311++G(2df,2p), and G2 levels of theory. Corresponding reactants, products, intermediates, and interconversion and dissociation transition states are located on the reaction potential energy profiles. Computation results show that in the reaction of CP with CH(2)CCH(2) the dominant reaction product should be species CH(2)CCHCP. Also, we can suggest species HCCCH(2)CP as a secondary reaction product despite of only minor contribution to reaction products. In the reaction of CP with CH(3)CCH, the primary and secondary products are suggested to be two important molecules HCCCP and CH(3)CCCP, respectively. The predicted mechanisms for the two reactions are not in parallel with the reactions of CN with allene CH(2)CCH(2) and methylacetylene CH(3)CCH given in previous studies. The present calculations provide some useful information for future possible experimental isolation and observation for some interesting unsaturated carbon-phosphorus-bearing species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.