Abstract
Dielectrophoresis (DEP), electrorotation (ROT), and electro-orientation were used for the dielectric spectroscopy of nucleated three-axial chicken red blood cells (CRBCs). Because the different AC-electrokinetic effects are not mutually independent, their DEP and ROT spectra were combined in ranges separated by the reorientation of the CRBCs in the inhomogeneous linear DEP and circular ROT fields. This behavior can be qualitatively described by a single-shell ellipsoidal model. Whereas in linear fields, the maximum of the Clausius-Mossotti factor along the three axes determines the orientated axis, in circular fields, the minimum of the factor determines the axis perpendicularly orientated to the field plane. Quantitatively, it has not been possible to find a consistent parameter set for fitting the DEP and ROT spectra, as well as the reorientation frequencies. Our ellipsoidal CRBC standard model had semiaxes of a=7.7μm, b=4.0μm, and c=1.85μm, a relative permittivity of 35 to 45 and conductivity of 0.36 to 0.04S/m for the cytoplasm, combined with a specific capacitance of 10 to 14mF/m2 and a conductivity of 3500S/m2 for the cell membrane. The fits in different external conductivity ranges between external conductivities of 0.015 and 1.0S/m were improved when the membrane capacitance was changed between 4 to 25mF/m2 depending on the method used. A similar transition was reflected in the effective properties of a three-shell spherical model containing an internal membranous sphere with the geometry of the CRBC nucleus. Our findings suggest that the simultaneous interpretation of various AC-electrokinetic spectra is a step toward the dielectric fingerprinting of biological cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.