Abstract

AbstractLithium–sulfur batteries (LSBs) are feasible candidates for the next generation of energy storage devices, but the shuttle effect of lithium polysulfides (LiPSs) and the poor electrical conductivity of sulfur and lithium sulfides limit their application. Herein, a sulfur host based on nitrogen‐doped carbon (NC) coated with small amount of a transition metal telluride (TMT) catalyst is proposed to overcome these limitations. The properties of the sulfur redox catalyst are tuned by adjusting the anion vacancy concentration and engineering a ZnTe/CoTe2 heterostructures. Theoretical calculations and experimental data demonstrate that tellurium vacancies enhance the adsorption of LiPSs, while the formed TMT/TMT and TMT/C heterostructures as well as the overall architecture of the composite simultaneously provide high Li+ diffusion and fast electron transport. As a result, v‐ZnTe/CoTe2@NC/S sulfur cathodes show excellent initial capacities up to 1608 mA h g−1 at 0.1C and stable cycling with an average capacity decay rate of 0.022% per cycle at 1C during 500 cycles. Even at a high sulfur loading of 5.4 mg cm–2, a high capacity of 1273 mA h g−1 at 0.1C is retained, and when reducing the electrolyte to 7.5 µL mg−1, v‐ZnTe/CoTe2@NC/S still maintains a capacity of 890.8 mA h g−1 after 100 cycles at 0.1C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.