Abstract
Nanomedicine faces the challenges of infinite dilution, shear force, biological protein, or electrolyte competition. However, core cross-linking leads to biodegradability deficiency and brings inevitable side effects of nanomedicine on normal tissues. In order to overcome this bottleneck problem, we turn to amorphous poly(d,l)lactic acid (PDLLA)-dextran bottlebrush to emphasize the core stability of nanoparticles, and the amorphous structure offers an additional advantage of fast degradation property over the crystalline PLLA polymer. The graft density and side chain length of amorphous PDLLA together played important influence roles in controlling the architecture of nanoparticles. This effort produces structure-abundant particles, including micelles, vesicles, and large compound vesicles after self-assembly. Here, the amorphous bottlebrush PDLLA was verified to play a beneficial role in the structure stability and degradability of nanomedicines. The codelivery of the hydrophilic antioxidant of citric acid (CA), vitamin C (VC), and gallic acid (GA) via the optimum nanomedicines could effectively repair the SH-SY5Y cell damage caused by H2O2. The CA/VC/GA combination treatment repaired the neuronal function efficiently, and the cognitive abilities of senescence-accelerated mouse prone 8 (SAMP8) recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.