Abstract

A numerical work is performed to analyze combined convection heat transfer and fluid flow in a partially heated porous lid-driven enclosure. The top wall of enclosure moves from left to right with constant velocity and temperature. Heater with finite length is located on the fixed wall where its center of location changes along the walls. The finite volume-based finite-difference method is applied for numerical experiments. Parameters effective on flow and thermal fields are Richardson number, Darcy number, center of heater and heater length. The results are shown that the best heat transfer is formed when the heater is located on the left vertical wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.