Abstract

Multi-motor-pendulum vibration systems have been applied to design shale shakers in petroleum drilling engineering. However, synchronization of the multi-motor-pendulum vibration system is instable on account of external load disturbance and systematic parameter restriction, which is a principal factor to decrease screening efficiency of shale shakers. In this work, to maintain stability synchronization of three eccentric rotors driven by three induction motors, a combined synchronous control strategy by tracking velocity and phase among the motors is proposed. First, the dynamic model of the system is deduced based on the Lagrange equation. Second, adjacent cross-coupled control combined with master–slave control is designed to control speed and synchronization between the motors in the multi-motor-pendulum vibration system. Third, to ensure the precision and robustness of the control system, the velocity error, phase error, and coupling error controllers are designed with reaching law algorithm and global sliding mode control; and stability of the controller system is validated by the Lyapunov theorem. Finally, the effectiveness of the control strategy is verified by numerical simulation and compared with previous findings. The results indicate that synchronous state and velocity overshoot of the motors can be controlled with the combined control strategy; and robustness of the control strategy is better than other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call