Abstract
Ultrafast thermomechanical responses of silicon thin films due to ultrashort-pulsed laser irradiation were investigated using an atomic-level hybrid method coupling the molecular dynamics and the ultrafast two-step energy transport model. The dynamic reflectivity and absorption were considered, and the effects of laser fluence and pulse duration on the thermomechanical response were studied. It was found that both the carrier temperature and number density rapidly increase to their maximum while the lattice temperature rises at a much slower rate. The ultrafast laser heating could induce a strong stress wave in the film, with the maximum compressive and tensile stress occurring near the front and back surfaces, respectively. For laser pulses of the same duration, the higher the laser fluence is, the higher the carrier temperature and density and lattice temperature are induced. For the same laser fluence, a longer pulse generally produces lower carrier density and temperatures and weaker stress shock strength. However, for the fluence of 0.2 J/cm2, the lowest lattice temperature was simulated for a 100-fs pulse compared to the 1-ps and 5-ps pulses, due to the increase of reflectivity by high carrier density. It is also shown that the optical properties as functions of lattice temperature usually employed are not suited for modeling ultrafast laser interactions with silicon materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.