Abstract

A second-order multireference perturbation theory, termed as IVO-SSMRPT which allows the use of CASCI reference wave functions with improved virtual orbitals (IVO) for capturing static correlation and state-specific parameterization of the state-universal electronic wave function in an attempt to account for dynamic correlation has been utilized in an investigation of the torsional properties of ethylene, silaethylene, hydrogen peroxide, hydrazine, and oxalyl chloride. We also calculate the barrier to inversion of ammonia. IVO-SSMRPT is robust and useful to scan energy surfaces as it avoids the intruder-state problem, a troubling aspect of various established MRPT methods, without exploiting level-shifting or increasing the size of the active space. We find that IVO-SSMRPT with the use of a relatively small active space and basis set can be compared with recent reference estimates which are reproduced within the expected precision indicating the method is useful for the study of rotation and inversion barriers of challenging molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.