Abstract

In this paper, boundary integral formulations for a time‐harmonic acoustic scattering‐resonance problem are analyzed. The eigenvalues of eigenvalue problems resulting from boundary integral formulations for scattering‐resonance problems split in general into two parts. One part consists of scattering‐resonances, and the other one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior of the scatterer. The proposed combined boundary integral formulations enable a better separation of the unwanted spectrum from the scattering‐resonances, which allows in practical computations a reliable and simple identification of the scattering‐resonances in particular for non‐convex domains. The convergence of conforming Galerkin boundary element approximations for the combined boundary integral formulations of the resonance problem is shown in canonical trace spaces. Numerical experiments confirm the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.