Abstract

Background and purposeCone beam computed tomography (CBCT) is routinely used in radiotherapy to localize target volume. The aim of our study was to determine the biological effects of CBCT dose compared to subsequent therapeutic dose by using in vitro chromosome dosimetry.Materials and methodsPeripheral blood samples from five healthy volunteers were irradiated in two phantoms (water filled in-house made cylindrical, and Pure Image CTDI phantoms) with 6 MV FFF X-ray photons, the dose rate was 800 MU/min and the absorbed doses ranged from 0.5 to 8 Gy. Irradiation was performed with a 6 MV linear accelerator (LINAC) to generate a dose–response calibration curve. In the first part of the investigation, 1–5 CBCT imaging was used, in the second, only 2 Gy doses were delivered with a LINAC, and then, in the third part, a combination of CBCT and 2 Gy irradiation was performed mimicking online adapted radiotherapy treatment. Metaphases were prepared from lymphocyte cultures, using standard cytogenetic techniques, and chromosomal aberrations were evaluated. Estimate doses were calculated from chromosome aberrations using dose–response curves.ResultsSamples exposed to X-ray from CBCT imaging prior to treatment exhibited higher chromosomal aberrations and Estimate dose than the 2 Gy therapeutic (real) dose, and the magnitude of the increase depended on the number of CBCTs: 1–5 CBCT corresponded to 0.04–0.92 Gy, 1 CBCT + 2 Gy to 2.32 Gy, and 5 CBCTs + 2 Gy to 3.5 Gy.ConclusionThe estimated dose based on chromosomal aberrations is 24.8% higher than the physical dose, for the combination of 3 CBCTs and the therapeutic 2 Gy dose, which should be taken into account when calculating the total therapeutic dose that could increase the risk of a second cancer. The clinical implications of the combined radiation effect may require further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.