Abstract

A two-stage treatment system that included vertical flow (VF) and free-water surface (FWS) constructed wetlands was investigated for the dual purposes of sewage treatment and reuse. The VF included four layers (biochar, sand, gravel, and sandy soil), and the FWS was installed after the VF and used as a polishing tank. Two types of local plants, namely Colocasia esculenta and Canna indica, were planted in the VF and FWS, respectively. The system operated for approximately six months, and the experimental period was categorized into four stages that corresponded to changes in the hydraulic loading rate (HLR) (0.02–0.12 m/d). The removal efficiencies for total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD5), ammonia (NH4-N), and total coliform (Tcol) were 71 ± 11%, 73 ± 13%, 79 ± 11%, 91 ± 3%, and 70 ± 20%, respectively. At HLRs of 0.04–0.06 m/d, the COD and BOD5 levels satisfied Vietnam's irrigation standards, with removable rates of 64% and 88%, respectively, and the TSS and Tcol levels satisfied Vietnam's standards for potable water. Furthermore, the NO3-N levels satisfied the reuse limits, whereas the NH4-N levels exceeded the reuse standards. At high HLRs (e.g., 0.12 m/d), all the effluent parameters, except Tcol and NO3-N, exceeded the standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.