Abstract
A reduced stiffness theoretical analysis of the imperfection sensitive elastic buckling for end supported shells of revolution is extended to the case of arbitrary combinations of axial and radial pressure loading. Depending upon the shell and loading parameters, the potential reductions in load capacity due to imperfections are shown to involve two distinct forms of post-buckling loss of stiffness. Lower bounds in each of these regimes are provided by appropriate reduced stiffness models, and shown by comparisons with available test data to be reliable even for relatively perfect test models. By attributing reductions in load carrying capacity to weakened end support conditions, it is suggested that past interpretations of these tests may have underestimated the deleterious effects of initial imperfections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.