Abstract
Circular intensity differential scattering (CIDS) is based on the analysis of circular polarized light scattering and has been proven to be an interesting label-free microscopy technique sensitive to the chiral organization at the submicroscopic level. However, this approach averages the localized contrasts related to the sample polarimetric properties in the illumination volume. Additionally, the detection sensitivity suffers from the confinement of the mixture of structures, and it becomes an arduous task to discriminate the source of the signal. In this work, we show that a phasor map approach combined with CIDS microscopy has provided an intuitive view of the sample organization to recognize the presence of different molecular species in the illumination volume. The data represented in terms of polarization response mapped to a single point called a phasor also have the potential to pave the way for the analysis of large data sets. We validated this method by numerical simulations and compared the results with that of experimental data of optical devices of reference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.