Abstract
Postoperative complications in patients of rectal cancer pose challenges to postoperative recovery. Accurately predicting these complications is crucial for developing effective treatment plans for patients. In this retrospective study, 493 patients with rectal cancer who underwent radical resection between January 2020 and December 2021 were examined. We evaluated logistic regression, support vector machines, regression trees, and random forests to predict the incidence of postoperative complications in patients and evaluate the performance of the model. The results will be analyzed to make recommendations for reducing complications. Among the four machine learning models, random forest demonstrated the highest results. The performance of this model was showed with an AUC of 0.880 (95% CI 0.807-0.949), an accuracy of 88.0% (95% CI 0.815-0.929), a sensitivity of 96.6%, and a specificity of 45.8%. Notably, factors such as inflammation related prognostic index, prognostic nutritional index, tumor location, and T stage were found to significantly increase the probability of postoperative complications. Our study provided evidence that machine learning models can effectively evaluate early postoperative complications of the patients after surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.