Abstract

Salinity stress is one of the most harmful abiotic stresses that inhibit crop growth and grain yield. In this study, a salt-tolerant bacterium was isolated from the soil of the rice rhizosphere and named Myroides sp. JIL321, based on the results of the phylogenetic tree analysis. The strain JIL321 tolerated up to 1, 283.37 mM of NaCl and exhibited positive plant growth-promoting traits, such as the production of indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Therefore, the effects of JIL321 on rice (Oryza sativa L.) under salinity stress were determined. The inoculation of strain JIL321 significantly increased the chlorophyll content and the accumulation of osmotic adjustment substances, such as proline and soluble sugars, in rice expose to salt stress. Additionally, strain JIL321 inoculation significantly enhanced the activities of some enzymes commonly found in soil, such as urease, invertase and catalase. Moreover, the production of hydrogen sulfide (H2S), a pivotal signaling molecule, was also induced in rice by salt stress. Treatment with sodium hydrogen sulfide (NaHS, H2S donor) improved salt stress tolerance of the rice, while treatment with hypotaurine (HT, H2S scavenger) significantly suppressed it. Interestingly, NaHS treatment also improved the production of IAA and ACC deaminase in strain JIL321 under 0 mM and 150 mM salt concentrations. The combined treatment of JIL321 and NaHS could further improve the growth of salt-stressed rice seedlings, most likely due to the interaction effect between H2S and strain JIL321. To our knowledge, this study is the first to demonstrate that the combined use of H2S and plant growth-promoting bacteria could alleviate the adverse effects of salt stress on rice plants, and further verifies the novel role of H2S as a signaling molecule that enhance the tolerance of plant to abiotic stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.