Abstract

The aim of the study was to assess the capabilities of combined application of dual-wavelength fluorescence visualization and contactless skin thermometry during photodynamic therapy monitoring (PDT) of basal cell cancer.Materials and Methods.The study was performed at the University Clinic of Privolzhsky Research Medical University (Nizhny Novgorod). Nine clinically, dermatoscopically, and histologically verified foci of basal cell skin cancer were exposed to PDT sessions (wavelength of 662 nm, light dose density of 150 J/cm2) with systemic application of chlorin-based photosensitizer Fotoditazin. A semiconductor laser system Latus-T (Russia) was employed for irradiation. Dual-wavelength fluorescence visualization and contactless thermometry with an IR pyrometer were used to monitor the PDT sessions.Results.The PDT sessions of nine foci of basal cell cancer were carried out under the control of fluorescence imaging and contactless thermometry. Photosensitizer photobleaching in all foci amounted to 40% signifying a percent of photosensitizer involved in the photodynamic reaction. It has been shown that the combined employment of dual-wavelength fluorescence monitoring and contactless thermometry during the PDT of basal cell skin cancer allows oncologists to control simultaneously the degree of photosensitizer photobleaching and the depth of the photodynamic effect in tissues, the extent of involving the mechanisms associated with hyperthermia as well as the correctness of the procedure conducting. In the course of 9-month dynamic follow-up after the treatment, no clinical and dermatoscopic signs of recurrence were found.Conclusion.A bimodal control of PDT enables the assessment of the correctness and efficacy of the procedure performance. The contactless control of tissue heating allows ensuring the temperature mode for hyperthermia realization, while the fluorescence monitoring makes it possible to evaluate the accumulation of the photosensitizer in the tumor and the depth of the PDT action as well as to predict the procedure efficacy based on the photobleaching data. The complementary use of these techniques allows the adjustment of the mode directly in the course of the PDT procedure. The acquisition of the sufficient statistical data on the combined monitoring will result in the development of a novel PDT protocol.

Highlights

  • In 2018, a total of 624,709 primary cases of malignant neoplasms were revealed in the Russian Federation, with the value increase by 1.2% as compared to 2017

  • The aim of the study was to assess the capabilities of combined application of dual-wavelength fluorescence visualization and contactless skin thermometry during photodynamic therapy monitoring (PDT) of basal cell cancer

  • It has been shown that the combined employment of dual-wavelength fluorescence monitoring and contactless thermometry during the PDT of basal cell skin cancer allows oncologists to control simultaneously the degree of photosensitizer photobleaching and the depth of the photodynamic effect in tissues, the extent of involving the mechanisms associated with hyperthermia as well as the correctness of the procedure conducting

Read more

Summary

Introduction

In 2018, a total of 624,709 primary cases of malignant neoplasms were revealed in the Russian Federation, with the value increase by 1.2% as compared to 2017. Skin is one of the leading localizations in the general structure of the oncologic morbidity (12.6% among non-melanoma cancers, 14.4% among all cancers including melanoma). The number of patients with skin malignant neoplasms (excluding melanoma) per 100,000 population in Russia amounted to 233.4 in 2008 and 298.2 in 2018 [1]. Basal cell skin cancer (BCSC) is an epithelial malignant tumor developing in epidermis or hair follicles from basal keratinocytes with locally destructive growth and rare metastasizing. Clinical recommendations for treatment of non-melanoma skin cancers imply an individual approach in selecting the treatment tactics taking into consideration the localization, extension of the tumor process, prognostic factors, general condition of the patient including the severity of comorbid pathologies. If BCSC foci are located in hard-to-reach places, or in case of multiple foci, or a chronic somatic pathology in the medical history, treatment may appear to be complicated or impossible [2, 3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call