Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.