Abstract

In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5)/NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 °C and pH = 6 after 72 h of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further artificial neural networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30 °C. The evolved process and Rhizopus oryzae (SN5)/NCIM-1447 strain would be promising for protease production at industrial scale at low cost.

Highlights

  • Proteases or peptidyl-peptide hydrolases (EC: 3.4.21-24 and 99) catalyze the total hydrolysis of proteins by acting on their peptide bonds

  • The present study showed that out of the five substrateswheat bran, rice husk, soybean meal, black gram husk and mixture of wheat bran and soybean meal; maximum alkaline protease production was observed by using mixture of wheat bran and soybean meal

  • It was observed that fermentation carried out using a mixture of wheat bran and soybean meal produced maximum protease as compared to when wheat bran and soybean meal were used alone

Read more

Summary

Introduction

Proteases or peptidyl-peptide hydrolases (EC: 3.4.21-24 and 99) catalyze the total hydrolysis of proteins by acting on their peptide bonds. They are able to catalyse both hydrolytic and synthetic reactions, based on substrate, pH and other physicochemical conditions. Alkaline proteases occupy a pivotal position with respect to their applications in both physiological and commercial fields. They are mainly used in food industry as probiotics, in food processing, in beverages etc., as antimicrobial agent in medicine, textile manufacturing, detergent, food-processing, paper and pulp industries, leather industry, etc. The global protease enzymes market is envisaged to grow at a healthy CAGR of 5.3%. From 2014 to 2019, protease consumption in China is expected to elevate at a CAGR of 6%, reaching up to USD 272.6 million by 2019

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.