Abstract
Objective and rater independent analysis of movement impairment is one of the most challenging tasks in medical engineering. Especially assessment of motor symptoms defines the clinical diagnosis in Parkinson's disease (PD). A sensor-based system to measure the movement of the upper and lower extremities would therefore complement the clinical evaluation of PD. In this study two different sensor-based systems were combined to assess movement of 18 PD patients and 17 healthy controls. First, hand motor function was evaluated using a sensor pen with integrated accelerometers and pressure sensors, and second, gait function was assessed using a sports shoe with attached inertial sensors (gyroscopes,accelerometers).Subjects performed standardized tests for both extremities.Features were calculated from sensor signals to differentiate between patients and controls. For the latter, pattern recognition methods were used and the performance of four classifiers was compared. In a first step classification was done for every single system and in a second step for combined features of both systems. Combination of both motor task assessments substantially improved classification rates to 97%using the AdaBoost classifier for the experiment patients vs.controls.The combination of two different analysis systems led to enhanced, more stable, objective, and rater independent recognition of motor impairment. The method can be used as a complementary diagnostic tool for movement disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.