Abstract

Polycyclic aromatic hydrocarbons (PAH) and tobacco-specific nitrosamines, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are widely accepted to be two important types of lung carcinogens in cigarette smoke. In this study, we have developed a method to estimate individual uptake of these compounds by quantifying r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in 1 mL of smokers' plasma. PheT and NNAL are biomarkers of PAH and NNK uptake, respectively. [D10]PheT and [pyridine-D4]NNAL were added to plasma as internal standards. The plasma was treated with beta-glucuronidase to release any conjugated PheT and NNAL. The analytes were enriched by solid-phase extraction on a mixed mode cation exchange cartridge and the PheT fraction was further purified by high-performance liquid chromatography. The appropriate fractions were analyzed by gas chromatography-negative ion chemical ionization-mass spectrometry for PheT and liquid chromatography-electrospray ionization-mass spectrometry for NNAL. The method was sensitive (limits of quantitation: PheT, 13 fmol/mL; NNAL, 3 fmol/mL), accurate, and precise. Levels of PheT and NNAL in plasma from 16 smokers averaged 95 +/- 71 and 36 +/- 21 fmol/mL, respectively, which are approximately 1% to 2% of the amounts found in urine. This method should be useful in molecular epidemiology studies of carcinogen uptake and lung cancer in smokers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call