Abstract

Alterations in gut microbiota have been implicated in the pathogenesis of ankylosing spondylitis (AS), but the underlying mechanisms remain elusive. This study aims to investigate changes in gut microbiota and metabolites in individuals with AS before and after treatment with secukinumab, to identify the biological characteristics specific to AS patients and investigate the potential biomarkers, for optimizing therapeutic strategies more effectively. Fecal microbiome data were collected from 30 AS patients before and after secukinumab therapy and compared with data from 40 healthy controls (HC). Additionally, we analyzed the metabolic profile of both groups from plasma. Findings indicated that the treatment-induced changes in the composition of several crucial bacterial groups, including Megamonas, Prevotella_9, Faecalibacterium, Roseburia, Bacteroides, and Agathobacter. Post-treatment, these groups exhibited a distribution more akin to that of the healthy populations compared with their pretreatment status. We identified three gut microbial taxa, namely Prevotellaceae_bacterium_Marseille_P2831, Prevotella_buccae, and Elusimicrobiota, as potential biomarkers for diagnosing individuals at a higher risk of developing AS and assessing disease outcomes. Plasma metabolomics analysis revealed 479 distinct metabolites and highlighted three disrupted metabolic pathways. Integration of microbiome and metabolomics datasets demonstrated a significant degree of correlation, underscoring the impact of the microbiome on metabolic activity. Secukinumab can restore the balance of the gut microbiome and metabolites in AS patients, rendering them more similar to those found in the healthy population. The analysis of microbiome and metabolomics data have unveiled some candidate biomarkers capable of evaluating treatment efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.