Abstract

Semiconducting photocatalytic overall water splitting and CO2 reduction are possible solutions to the emerging worldwide challenges of oil shortage and continual temperature increase, and the key is to develop an efficient photocatalyst. Most photocatalysts contain the d0, d10 or d10ns2 metals, and a guiding principle is desired to help to distinguish outstanding semiconductors. Here, the d10 bimetal oxide In2Ge2O7 was selected as the target. First, density functional theory (DFT) calculations point out that the nonbonding O 2p orbitals dominate the valence band maximum (VBM), and In 5s-O 2s and Ge 4s-O 2s antibonding orbitals are the major components of conduction band minimum (CBM). Moreover, the molecular orbitals were analyzed to consolidate the DFT calculations and make it more understandable for chemists. Due to the very small specific surface area (0.51 m2/g) and wide band gap (4.14 eV), as-prepared In2Ge2O7 did not exhibit any overall water splitting activity; nevertheless, when loading with 1 wt% cocatalyst (i.e., Pt, Pd), the surficial charge recombination can be greatly eliminated and the overall water splitting activity is significantly improved to 33.0(4) and 17.2(7) μmol/h for H2 and O2 generation, respectively. The apparent quantum yield (AQY) at 254 nm is 8.28%. This observation is proof that the inherent electronic structure of In2Ge2O7 is beneficial for the charge migration in bulk. Moreover, this catalyst also exhibits an observable CO2 reduction activity in pure water, which is a competition reaction with water splitting, anyway, the CH4 selectivity can be enhanced by loading Pd. This is a successful attempt to unravel the structure-property relationship by combining the analyses on electronic structure and molecular orbitals and is enlightening to further discover good candidates to photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.