Abstract
Although current immunotherapeutic strategies including adenovirus (AdV)-mediated gene therapy and dendritic cell (DC) vaccine can all stimulate antitumor cytotoxic T lymphocyte (CLT) responses, their therapeutic efficiency has still been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or growth inhibition of small tumors in vivo. However, it is the well-established tumors in animal models that mimic clinical patients with existing tumor burdens. Alpha tumor necrosis factor (TNF-alpha) is a multifunctional and immunoregulatory cytokine that induces antitumor activity and activates immune cells such as DCs and T cells. We hypothesized that a combined immunotherapy including gene therapy and DC vaccine would have some advantages over each modality administered as a monotherapy. We investigated the antitumor immunotherapeutic efficiency of gene therapy by intratumoral injection of AdVTNF-alpha and DC vaccine using subcutaneous injection of TNF-alpha-gene-engineered DC(TNF-alpha) cells, and further developed a combined AdV-mediated TNF-alpha-gene therapy and TNF-alpha-gene-engineered DC(TNF-alpha) vaccine in combating well-established MO4 tumors expressing the ovalbumin (OVA) gene in an animal model. Our data show that vaccination of DC(TNF-alpha) cells pulsed with the OVA I peptide can (i) stimulate type 1 immune response with enhanced antitumor CTL activities, (ii) induce protective immunity against challenge of 5 x 10(5) MO4 tumor cells, and (iii) reduce growth of the small (3-4 mm in diameter), but not large, established MO4 tumors (6-8 mm in diameter). Our data also show that AdVTNF-alpha-mediated gene therapy can completely eradicate small tumors in 6 out of 8 (75%) mice due to the extensive tumor necrosis formation, but not the large tumors (0%). Interestingly, a combined AdVTNF-alpha-mediated gene therapy and TNF-alpha-gene-engineered DC(TNF-alpha) vaccine is able to cure 3 out of 8 (38%) mice bearing large MO4 tumors, indicating that the combined immunotherapy strategy is much more efficient in combating well-established tumors than monotherapy of either gene therapy or DC vaccine alone. This novel combined immunotherapy may become a tool of considerable conceptual interest in the implementation of future clinical objectives.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.