Abstract

The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso- N-acetyl- dl-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.