Abstract

An accurate vehicle guidance system is required for some precision agriculture operations. It can be used for high speed direct seeding on a farm tractor. Such a system also ensures neither overlapping nor missing areas during the harvest, even when visibility is poor. But, automatic path following in the field is a difficult problem. Many vehicle guidance systems have been studied. Some use two dimensional (2D) information, while others are based upon 3D information. Most of the sensors use output information relative to their environment without absolute reference of the path. As the new reference is based on the previous pass, one of the main problems encountered with the edge following systems is an increase in the amplitude of oscillations due to guidance errors in successive passes. Thus, human operators frequently and periodically sacrifice efficiency in one pass to “straighten out” the edge of the worked area. Another kind of sensor, centimeter accuracy Real-Time Kinematic based Global Positioning System (GPS) receivers, can be used. The advent of accurate systems, with a standard deviation from the mean of about 10 mm, allows the design and implementation of absolute vehicle guidance systems. A few approaches to GPS-based control systems also include attitude measurement sensors such as fiber optic gyroscope. The preliminary work presented in this paper was aimed at validating the use of a GPS receiver in a vehicle guidance system, without any orientation sensor. We have designed a controller to perform a line-following task. Real-time experiments have been carried out on a combine harvester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.