Abstract

ObjectiveEndometriosis, defined as the growth of endometrial glands and stromal cells in a heterotopic location under the cyclic influence of ovarian hormones, is a common gynecological disorder manifested by chronic pelvic pain and infertility. In traditional Chinese medicine, endometriosis is characterized by stagnation of vital energy (qi) and blood stasis. Guizhi Fuling Wan (GFW) was first described in Chinese canonical medicine to treat disorders associated with stagnation of qi and blood stasis, including endometriosis. Therefore, the current study aimed to test the effects of combining GFW with western medicine on the suppression of endometriosis. Materials and methodsEndometriosis was generated by suturing endometrial tissue on the peritoneal wall of C57BL/6JNarl mice. The mice were subsequently treated with either GFW or current hormonal therapies or in combination for 28 days. ResultsEndometriosis development was inhibited by GFW, Gestrinone, Visanne, GFW + Gestrinone or GFW + medroxyprogesterone acetate (MPA). The expression of intercellular adhesion molecule 1 (ICAM-1) was inhibited by GFW, Gestrinone, MPA, Visanne, GFW + Gestrinone, GFW + MPA and GFW + Visanne. Vascular endothelial growth factor (VEGF) expression was inhibited by GFW, Gestrinone, Visanne, GFW + Gestrinone and GFW + MPA. Both ICAM-1- and VEGF-reducing effects of GFW were attenuated by western medicines. Administration of GFW, MPA, Visanne, GFW + MPA and GFW + Visanne also correspondingly reduced macrophage population in peritoneal fluid. GFW, MPA, Visanne, GFW + MPA and GFW + Visanne enhanced B-cell population in peritoneal fluid. ConclusionThe current study reveals the therapeutic effects of GFW on endometriosis. However, the combination of GFW and current hormonal therapies potentially impedes the efficacy of each individual agent in treating endometriosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.