Abstract
In this article we study canonical γ-structures, a class of RNA pseudoknot structures that plays a key role in the context of polynomial time folding of RNA pseudoknot structures. A γ-structure is composed of specific building blocks that have topological genus less than or equal to γ, where composition means concatenation and nesting of such blocks. Our main result is the derivation of the generating function of γ-structures via symbolic enumeration using so called irreducible shadows. We furthermore recursively compute the generating polynomials of irreducible shadows of genus ≤ γ. The γ-structures are constructed via γ-matchings. For 1 ≤ γ ≤ 10, we compute Puiseux expansions at the unique, dominant singularities, allowing us to derive simple asymptotic formulas for the number of γ-structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.