Abstract
We prove, in a purely combinatorial way, the spectral curve topological recursion for the problem of enumeration of bi-colored maps, which are dual objects to dessins d’enfant. Furthermore, we give a proof of the quantum spectral curve equation for this problem. Then we consider the generalized case of four-colored maps and outline the idea of the proof of the corresponding spectral curve topological recursion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.