Abstract

We derive a series of results on random walks on a d-dimensional hypercubic lattice (lattice paths). We introduce the notions of terse and simple paths corresponding to the path having no backtracking parts (spikes). These paths label equivalence classes which allow a rearrangement of the sum over paths. The basic combinatorial quantities of this construction are given. These formulas are useful when performing strong coupling (hopping parameter) expansions of lattice models. Some applications are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.