Abstract

The class of quasi-chain graphs is an extension of the well-studied class of chain graphs. This latter class enjoys many nice and important properties, such as bounded clique-width, implicit representation, well-quasi-ordering by induced subgraphs, etc. The class of quasi-chain graphs is substantially more complex. In particular, this class is not well-quasi-ordered by induced subgraphs, and the clique-width is not bounded in it. In the present paper, we show that the universe of quasi-chain graphs is at least as complex as the universe of permutations by establishing a bijection between the class of all permutations and a subclass of quasi-chain graphs. This implies, in particular, that the induced subgraph isomorphism problem is NP-complete for quasi-chain graphs. On the other hand, we propose a decomposition theorem for quasi-chain graphs that implies an implicit representation for graphs in this class and efficient solutions for some algorithmic problems that are generally intractable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call