Abstract

Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.

Highlights

  • The global reliance on the burning of fossil fuels for energy has led to increases in carbon dioxide and other greenhouse gas emissions, which is thought to be a primary driver of global climate change [1, 2]

  • Whilst an understanding of the impact of light stress on ethanologenic cyanobacteria is limited, there is potential for this environmental stress to be employed as an additional tool in optimising ethanol production in cyanobacteria, when coupled to genetic deletions for accumulating fixed carbon

  • Co-cultivation under these conditions showed an overall improvement in the titres of ethanol by the pdc/adh strain, in spite of a decrease in the overall biomass production compared to a mono-culture

Read more

Summary

Introduction

The global reliance on the burning of fossil fuels for energy has led to increases in carbon dioxide and other greenhouse gas emissions, which is thought to be a primary driver of global climate change [1, 2]. An in silico study generated a Synechocystis metabolic model designed for maximal ethanol production by increasing the coenzyme (NADPH) supply for adh, rather than redirecting pyruvate flux away from competing pathways [44]. An ethanol-producing strain of Syn-6803 was generated containing knockouts of both the glycogen and PHB biosynthesis pathways (ΔglgCΔphaCE/EtOH) to observe if there was a synergistic effect by impairing two carbon sinks [27].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call