Abstract

The mammalian transcriptional coactivator host cell factor-1 (HCF-1) functions in concert with Oct-1 and VP16 to assemble the herpes simplex virus (HSV) immediate early (IE) transcription enhancer core complexes that mediate the high level transcription of these genes upon infection. Although this transcriptional model has been well characterized in vitro, the requirements and significance of the components have not been addressed. Oct-1 was previously determined to be critical but not essential for HSV IE gene expression. In contrast, RNA interference-mediated depletion of HCF-1 resulted in abrogation of HSV IE gene expression. The HSV IE gene enhancer domain is a model of combinatorial transcription and consists of the core enhancer and multiple binding sites for factors such as Sp1 and GA-binding protein. It was striking that HCF-1 was strictly required for VP16-mediated transcriptional induction via the core enhancer as well as for basal level transcription mediated by GA-binding protein and Sp1. HCF-1 was also found to be essential for the induction of varicella zoster virus IE gene expression by ORF10, the VZV ortholog of the HSV IE transactivator VP16, and the autostimulatory IE62 protein. The critical dependence upon HCF-1 demonstrates that this cellular component is a key factor for control of HSV and VZV IE gene expression by functioning as the common element for distinct factors cooperating at the IE gene enhancers. The requirements for this protein supports the model whereby the regulated transport of HCF-1 from the cytoplasm to the nucleus in sensory neurons may control IE gene expression and reactivation of these viruses from the latent state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call