Abstract

ABSTRACTComposition spreads close to the Heusler alloy Ni2MnAl were grown onto 4-inch wafer substrates using molecular beam epitaxy. Compositional variations of up to 10 at.% relative to each constituent enable a direct comparison of the chemical-structural relationship with respect to martensitic transformation and to magnetic ordering as well as an efficient identification of the emerging phase stability regions. In this study, we set the primary focus on the structural aspects of the transformation behavior as observed by X-ray microdiffraction in combination with a specially designed heating stage. Notably, cross-sectional HRTEM imaging of the respective composition areas reveals a laminated two-phase martensitic structure inside the single grains, identified as a sequence of 2M and 14M variants. Stress relief upon transformation as observed by mechanical stress measurements reaches to 400 MPa depending on the composition. Magnetization measurements so far indicate field-induced ordering to occur at low temperatures, here, below 50 K which is assumed to be closely related to a high degree of structural disorder on the Mn-Al sublattice. Single-crystal thin films were realized by means of an epitaxial relationship to MgO (001).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call