Abstract

A new method for constructing an oligosaccharide library composed of structurally defined oligosaccharides is presented based on an iterative glycosylation of selenoglycosides. Treatment of 2-acyl-protected selenoglycosides with bromine selectively generates beta-bromoglycosides, which serve as glycosyl cation equivalents in the oligosaccharide synthesis. Thus, the coupling of the bromoglycosides with another selenoglycoside affords the corresponding glycosylated selenoglycosides, which can be directly used to next glycosylation. The iteration of this sequence allows the synthesis of a variety of oligosaccharides including an elicitor active heptasaccharide. A characteristic feature of the iterative glycosylation is that glycosyl donors and acceptors with the same anomeric reactivity can be selectively coupled by activation of the glycosyl donor prior to coupling with the glycosyl acceptor. Therefore, same selenoglycosides can be used for both the glycosyl donors and the acceptors. This feature has been exemplified by a construction of an oligosaccharide library directed to elicitor-active oligosaccharides. The library composed of stereochemically defined oligoglucosides with considerable structural diversity can be constructed starting from simple selenoglycosides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call