Abstract

The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alpha (n; k_1,\ldots,k_n)$ in $n$ variables. The evaluation of this polynomial at weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n $turns out to be interpretable as signed enumeration of new combinatorial objects called Decreasing Monotone Triangles. There exist surprising connections between the two classes of objects – in particular it is shown that $\alpha (n;1,2,\ldots,n) = \alpha (2n; n,n,n-1,n-1,\ldots,1,1)$. In perfect analogy to the correspondence between Monotone Triangles and Alternating Sign Matrices, the set of Decreasing Monotone Triangles with bottom row $(n,n,n-1,n-1,\ldots,1,1)$ is in one-to-one correspondence with a certain set of ASM-like matrices, which also play an important role in proving the claimed identity algebraically. Finding a bijective proof remains an open problem. Le nombre de Triangles Monotones ayant pour dernière ligne $k_1 < k_2 < ⋯< k_n$ est donné par un polynôme $\alpha (n; k_1,\ldots,k_n)$ en $n$ variables. Il se trouve que les valeurs de ce polynôme en les suites décroissantes $k_1 ≥k_2 ≥⋯≥k_n$ peuvent s'interpréter comme l'énumération signée de nouveaux objets appelés Triangles Monotones Décroissants. Il existe des liens surprenants entre ces deux classes d'objets – en particulier on prouvera l'identité $\alpha (n;1,2,\ldots,n) = \alpha (2n; n,n,n-1,n-1,\ldots,1,1)$. En parfaite analogie avec la correspondance entre Triangles Monotones et Matrices à Signe Alternant, l'ensemble des Triangles Monotones Décroissants ayant pour dernière ligne $(n,n,n-1,n-1,\ldots,1,1)$ est en correspondance biunivoque avec un certain ensemble de matrices similaires aux MSAs, ce qui joue un rôle important dans la preuve algébrique de l'identité précédente. C'est un problème ouvert que d'en donner une preuve bijective.

Highlights

  • A Monotone Triangle of size n is a triangular array of integers1≤j≤i≤n a1,1 a2,1 a2,2 an,1an,n by the Austrian Science Foundation FWF, START grant Y463 and NFN grant S9607-N13.1365–8050 c 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, FranceIlse Fischer and Lukas Riegler with strict increase along rows and weak increase along North-East- and South-East-diagonals

  • There exists a polynomial α(n; k1, k2, . . . , kn ) of degree n − 1 in each of the n variables, such that the evaluation of this polynomial at strictly increasing sequences k1 < k2 < · · · < kn yields the number of Monotone Triangles with prescribed bottom row (k1, . . . , kn ) – for example α(5; 2, 4, 5, 8, 9) = 16939

  • We give an interpretation to the evaluations at weakly decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn : A Decreasing Monotone Triangle (DMT) of size n is a triangular array of integers1≤j≤i≤n having the following properties: 1. The entries along North-East- and South-East-diagonals are weakly decreasing

Read more

Summary

Combinatorial Reciprocity for Monotone Triangles

To cite this version: Ilse Fischer, Lukas Riegler. Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés

Introduction
Decreasing Monotone Triangles
Each of the first i rows of
Connections between Monotone Triangles and DMTs
Findings
Towards a bijective proof
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call