Abstract

We introduce a new model construction for Martin-Löf intensional type theory, which is sound and complete for the 1-truncated version of the theory. The model formally combines, by gluing along the functor from the category of contexts to the category of groupoids, the syntactic model with a notion of realizability. As our main application, we use the model to analyse the syntactic groupoid associated to the type theory generated by a graph G, showing that it has the same homotopy type as the free groupoid generated by G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.