Abstract
During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.