Abstract

The Mumford–Shah model has been one of the most influential models in image segmentation and denoising. The optimization of the multiphase Mumford–Shah energy functional has been performed using level sets methods that optimize the Mumford–Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of gradient descent. After the reformulation of the 2-phase Mumford–Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. The discrete hierarchical approaches are more effective than hierarchical (or direct) multiphase formulation using level sets. However, they provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete alternating optimization for the discretized Vese–Chan approximation of the piecewise constant multiphase Mumford–Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provides a global optimum if the image estimation data term is known apriori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.