Abstract

With the rise of e-commerce and increasing customer requirements, logistics service providers face a new complexity in their daily planning, mainly due to efficiently handling same-day deliveries. Existing multistage stochastic optimization approaches that allow solving the underlying dynamic vehicle routing problem either are computationally too expensive for an application in online settings or—in the case of reinforcement learning—struggle to perform well on high-dimensional combinatorial problems. To mitigate these drawbacks, we propose a novel machine learning pipeline that incorporates a combinatorial optimization layer. We apply this general pipeline to a dynamic vehicle routing problem with dispatching waves, which was recently promoted in the EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022. Our methodology ranked first in this competition, outperforming all other approaches in solving the proposed dynamic vehicle routing problem. With this work, we provide a comprehensive numerical study that further highlights the efficacy and benefits of the proposed pipeline beyond the results achieved in the competition, for example, by showcasing the robustness of the encoded policy against unseen instances and scenarios. History: This paper has been accepted for the Transportation Science special issue on DIMACS Implementation Challenge: Vehicle Routing Problems. Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant 449261765].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call