Abstract

We give several effective and explicit results concerning the values of some polynomials in binary recurrence sequences. First we provide an effective finiteness theorem for certain combinatorial numbers (binomial coefficients, products of consecutive integers, power sums, alternating power sums) in binary recurrence sequences, under some assumptions. We also give an efficient algorithm (based on genus 1 curves) for determining the values of certain degree 4 polynomials in such sequences. Finally, partly by the help of this algorithm we completely determine all combinatorial numbers of the above type for the small values of the parameter involved in the Fibonacci, Lucas, Pell and associated Pell sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.