Abstract

The nitro group of a neonicotinoid, imidacloprid, plays a key role in its selective actions on insect nicotinic acetylcholine receptors (nicotinic AChRs) and is postulated to bind close to residues Q79 in loop D and G189 in loop F of the chicken α7 nicotinic AChR. To evaluate the relative contributions of these residues to interactions with imidacloprid, Q79 and G189 were replaced in tandem by first basic then acidic residues. Changes in the currents evoked by imidacloprid and acetylcholine (ACh) on the α7 wild type and mutant receptors expressed in Xenopus laevis oocytes were investigated using two-electrode voltage clamp electrophysiology. An increase in the efficacy of imidacloprid for the α7 receptor resulting from the Q79K and Q79R mutations was suppressed by a G189E mutation in loop F. However, the increases in efficacy resulting from such Q79 mutations were scarcely influenced by a G189D substitution. Three-dimensional modeling of the α7 nicotinic AChR, based on the acetylcholine-binding protein (AChBP) of Lymnaea stagnalis, suggests that the reduced efficacy of imidacloprid following the G189E mutation is likely to result from carboxylate interference with the electronic interactions between the nitro group of imidacloprid and the basic residues in loop D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.