Abstract
α-Arbutin has been widely used as a skin-whitening ingredient. Previously, we successfully produced α-arbutin via whole-cell biocatalysis and found that the conversion rate of sucrose to α-arbutin was low (~45%). To overcome this issue, herein, we knocked out the genes of enzymes related to the sucrose hydrolysis, including sacB, sacC, levB, and sacA. The sucrose consumption was reduced by 17.4% in 24 h, and the sucrose conversion rate was increased to 51.5%. Furthermore, we developed an inducible protein degradation system with Lon protease isolated from Mesoplasma florum (MfLon) and proteolytic tag to control the PfkA activity, so that more fructose-6-phosphate (F6P) can be converted into glucose-1-phosphate (Glc1P) for α-arbutin synthesis, which can reduce the addition of sucrose and increase the sucrose conversion efficiency. Finally, the pathway of F6P to Glc1P was enhanced by integrating another copy of glucose 6-phosphate isomerase (Pgi) and phosphoglucomutase (PgcA); a high α-arbutin titer (~120 g/L) was obtained. The sucrose conversion rate was increased to 60.4% (mol/mol). In this study, the substrate utilization rate was boosted due to the attenuation of its hydrolysis and the assistance of the intracellular enzymes that converted the side product back into the substrate for α-arbutin synthesis. This strategy provides a new idea for the whole-cell biocatalytic synthesis of other products using sucrose as substrate, especially valuable glycosides.Key points The genes of sucrose metabolic pathway were knocked out to reduce the sucrose consumption. The by-product fructose was reused to synthesize α-arbutin. The optimized whole-cell system improved sucrose conversion by 15.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.