Abstract

Combinatorial Lévy processes evolve on general state spaces of combinatorial structures, of which standard examples include processes on sets, graphs and $n$-ary relations and more general possibilities are given by processes on graphs with community structure and multilayer networks. In this setting, the usual Lévy process properties of stationary, independent increments are defined in an unconventional way in terms of the symmetric difference operation on sets. The main theorems characterize both finite and infinite state space combinatorial Lévy processes by a unique $\sigma$-finite measure. Under the additional assumption of exchangeability, I prove a more explicit characterization by which every exchangeable combinatorial Lévy process corresponds to a Poisson point process on the same state space. Associated behavior of the projection into a space of limiting objects reflects certain structural features of the covering process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.